151
Рациональность / Re: Почему байесовская вероятность важнее других проявлений рациональности?
« : 08 Мая 2016, 11:31 »
Заботал теорию. Действительно, есть направление, когда в качестве правдоподобия используется число схожее с вероятностью и формула расчета, схожая с формулой Байеса.
В тоже время, это один из вариантов моделирования правдоподобия, не самый удачный.
Плюсы байесовского коэффициента правдоподобия:
- простой: коэффициент правдоподобия записывается одним числом, вклад в комплексную величину считается линейным
- легкий для обучения людей: формулы расчета схожи с расчетом вероятности
- есть примеры использования в computer science: наивный байесовский фильтр спама
Минусы байесовского коэффициента правдоподобия:
- считает исходные величины - независимыми между собой
- считает вклад элементарных величин - линейным
- считает случайные величины распределенными - равномерно
- не используется в современном computer science. Не используется в экспертных системах, в machine learning-е, в программах-ботах
- программы основанные на других коэффициентах правдоподобия показывают лучшие результаты, чем код, основанный на байесовском коэффициенте правдоподобия
Пример, показывающий неудачность байесовского коэффициента правдоподобия.
Формула Байеса работает для решения данной задачи при условии, что:
- независимы между собой - брак в работе, складывание деталей в общую группу, выбор детали для тестирования
- вероятность брака равномерна
- детали смешиваются в кучу равномерно
- начальник цеха равномерно выбирает деталь для тестирования
Как только эти условия меняются на другие, перестает работать и формула Байеса.
Например, в задаче могут быть следующие уточнения:
- вероятность брака растёт к вечеру,
- детали выкладываются в линию - сначала первого, затем второго, и далее - третьего рабочего;
- начальник цеха выбирает деталь с нормальным распределением от середины
Задача не решается через байеса, но решается через:
- нейронные сети, имеющие нелинейные операторы
- fuzzy logic (нечеткие множества)
- частотную вероятность
В тоже время, это один из вариантов моделирования правдоподобия, не самый удачный.
Плюсы байесовского коэффициента правдоподобия:
- простой: коэффициент правдоподобия записывается одним числом, вклад в комплексную величину считается линейным
- легкий для обучения людей: формулы расчета схожи с расчетом вероятности
- есть примеры использования в computer science: наивный байесовский фильтр спама
Минусы байесовского коэффициента правдоподобия:
- считает исходные величины - независимыми между собой
- считает вклад элементарных величин - линейным
- считает случайные величины распределенными - равномерно
- не используется в современном computer science. Не используется в экспертных системах, в machine learning-е, в программах-ботах
- программы основанные на других коэффициентах правдоподобия показывают лучшие результаты, чем код, основанный на байесовском коэффициенте правдоподобия
Цитировать
Программные спам-фильтры, построенные на принципах наивного байесовского классификатора, делают «наивное» предположение о том, что события, соответствующие наличию того или иного слова в электронном письме или сообщении, являются независимыми по отношению друг к другу. Это упрощение в общем случае является неверным для естественных языков таких как английский, где вероятность обнаружения прилагательного повышается при наличии, к примеру, существительного.
Пример, показывающий неудачность байесовского коэффициента правдоподобия.
Цитировать
Пусть вероятность брака у первого рабочего p_1=0,9, у второго рабочего — p_2=0,5, а у третьего — p_3=0,2. Первый изготовил n_1 = 800 деталей, второй — n_2=600 деталей, а третий — n_3=900 деталей. Начальник цеха берёт случайную деталь, и она оказывается бракованной. Спрашивается, с какой вероятностью эту деталь изготовил третий рабочий?
Формула Байеса работает для решения данной задачи при условии, что:
- независимы между собой - брак в работе, складывание деталей в общую группу, выбор детали для тестирования
- вероятность брака равномерна
- детали смешиваются в кучу равномерно
- начальник цеха равномерно выбирает деталь для тестирования
Как только эти условия меняются на другие, перестает работать и формула Байеса.
Например, в задаче могут быть следующие уточнения:
- вероятность брака растёт к вечеру,
- детали выкладываются в линию - сначала первого, затем второго, и далее - третьего рабочего;
- начальник цеха выбирает деталь с нормальным распределением от середины
Задача не решается через байеса, но решается через:
- нейронные сети, имеющие нелинейные операторы
- fuzzy logic (нечеткие множества)
- частотную вероятность