Теории вероятности еще недостаточно, ведь гипотезы выдвигаются неслучайно. Ваше предположение легко проверяется экспериментом, и я даже думаю, что приведенная цифра взята из эксперимента.
Возможно, в некотором эксперименте подобное и получилось. Как известно, теория вероятностей
ничего не может сказать о результате одиночного эксперимента. (Т.н. "вероятность" в классическом ее определении - всего лишь предел относительной частоты "успехов" при числе экспериментов, стремящихся в бесконечность.) Однако, интересно было бы взглянуть на статистические параметры этого эксперимента - объем выборки, доверительный интервал для этих 20% и прочее.
Нет, использование аппроксимаций - не то же, что принципиально другая фундаментальная модель, так что физика не работает "не по Юдковскому". (Физики - возможно.) И всё равно непонятно, как из него следует отсутствие необходимости искать контрпримеры.
Является ли релятивистская модель механики фундаментально другой по сравнению с классической механикой? Является ли волновая оптика фундаментально другой по сравнению с геометрической оптикой?
Кроме того - я не говорил ни разу о том, что контрпримеры искать не надо. Вообще говоря, по моему собственному опыту как математика, исследование проблемы происходит примерно так:
1. обсчитываем ряд примеров и формулируем гипотезу о том, каковы причины описываемого феномена (то самое набирание положительных примеров)
2. пытаемся доказать полученную гипотезу.
3а. если доказательство удалось получить успешно - исследование завершено, результат получен. Такое бывает крайне редко.
3б. если в каком-то месте доказательства возникла трудность, которую не удается преодолеть (нет возможности обосновать нужное неравенство, к примеру) - пытаемся исходя из сведений о природе этой трудности сформулировать контрпример. Если это удалось сделать - добавляем контрпример к списку "положительных примеров" и модифицируем исходную гипотезу, после чего переходим к шагу 1 или 2. Если же контрпример придумать не удается, то нужно пробовать другие методы доказательства, читать литературу, обращаться к коллегам и вообще "двигаться вширь". Иногда (нечасто) помогает численный эксперимент.