Вы здесь
Главные вкладки
Обзор катастрофических рисков ИИ: 3. ИИ-гонка
3. ИИ-гонка
Колоссальный потенциал ИИ создал конкурентное давление на больших игроков, конкурирующих за власть и влияние. Эту «ИИ-гонку» ведут государства и корпорации, считающие, что чтобы удержать свои позиции им надо быстро создавать и развёртывать ИИ. Это мешает должным образом приоритизировать глобальные риски и увеличивает вероятность, что разработка ИИ приведёт к опасным результатам. Аналогично ядерной гонке времён Холодной Войны, участие в ИИ-гонке может служить краткосрочным интересам участника, но в итоге приводит к худшим общечеловеческим исходам. Важно, что эти риски вытекают не только из неотъемлемых свойств ИИ-технологий, но и из конкурентного давления, которое поощряет некооперативные решения при разработке ИИ.
В этом разделе мы сначала опишем гонки военных ИИ и корпоративных ИИ, в которых страны и корпорации вынуждены быстро разрабатывать и внедрять ИИ-системы, чтобы оставаться конкурентоспособными. Затем мы отойдём от частностей и рассмотрим конкурентное давление как часть более обобщённого эволюционного процесса, который может делать ИИ всё убедительнее, мощнее и неотделимее от общества. Наконец, мы укажем на потенциальные стратегии и предложения планов действий, которые могут снизить риски ИИ-гонки и позволить удостовериться, что разработка ИИ ведётся безопасно.
3.1 Гонка военных ИИ
Разработка ИИ с военными целями открывает путь в новую эру военных технологий. Последствия могут быть на уровне пороха и ядерных бомб. Иногда это уже называют «третьей революцией в военном деле». Военное применение ИИ может принести много проблем: возможность более разрушительных войн, возможность случайного использования или потери контроля и перспектива, что злонамеренные лица заполучат эти технологии и применят их в своих целях. По мере того, как ИИ будут всё в большей степени превосходить традиционное вооружение и всё больше принимать на себя функции контроля и командования, человечество столкнётся с сдвигом парадигмы военного дела. Мы обсудим неочевидные риски и следствия этой гонки ИИ-вооружений для глобальной безопасности, возможность увеличения интенсивности конфликтов и мрачные исходы, к которым они могут привести, включая возможность эскалации конфликта до уровня экзистенциальной угрозы.
3.1.1 Летальное автономное вооружение (ЛАВ)
ЛАВ – оружие, которое может обнаруживать, отслеживать и поражать цели без участия человека [34]. Оно может ускорить и уточнить принятие решений на поле боя. Однако, военное дело – это область применения ИИ с особо высокими ставками и особой важностью соображений безопасности и морали. Существование ЛАВ не обязательно катастрофа само по себе, но они могут оказаться всем, чего не хватало, чтобы к катастрофе привело злонамеренное использование, случайное происшествие, потеря контроля или возможность войны.
ЛАВ могут значительно превосходить людей. Благодаря быстрому развитию ИИ, системы вооружений, которые могут обнаружить, нацелиться и решить убить человека сами собой, без направляющего атаку офицера или нажимающего на спусковой крючок солдата, формируют будущее военных конфликтов. В 2020 году продвинутый ИИ-агент превзошёл опытных пилотов F-16 в серии виртуальных боёв. Он одолел пилота-человека с разгромным счётом 5-0, продемонстрировав «агрессивное и точное маневрирование, с которым человек сравняться не мог» [35]. Как и в прошлом, лучшее оружие позволит учинять больше разрушений за более короткое время, что сделает войны более суровыми.
Рис. 7: Дешёвое автономное вооружение, вроде роя дронов с взрывчаткой, автономно и эффективно охотиться на людей, исполняя смертоносные удары по указу как армий, так и террористов, и снижая барьеры для крупномасштабного насилия.
Армии уже движутся в сторону делегирования ИИ решений, от которых зависят жизни. Полностью автономные дроны скорее всего впервые использовали на поле боя в Ливии в марте 2020 года, когда отступающие силы были «выслежены и удалённо атакованы» дронами, которые действовали без присмотра людей [36]. В мае 2021 года Силы Обороны Израиля использовали первый в мире управляемый ИИ вооружённый рой дронов во время военной операции. Это знаменовало собой веху в внедрении ИИ и дронов в военное дело [37]. Ходящие и стреляющие роботы пока не заменили на поле боя солдат, но технологии продвигаются так, что вполне может быть, это станет возможным уже скоро.
ЛАВ увеличивают частоту войн. Послать в бой солдат – тяжёлое решение, которое лидеры обычно не принимают легко. Но автономное оружие позволило бы агрессивным странам атаковать, не ставя под угрозу жизни своих солдат и получая куда меньше внутренней критики. Оружие с дистанционным управлением тоже имеет это преимущество, но для него нужны люди-операторы, и оно уязвимо к средствам подавления связи, что ограничивает его масштабируемость. ЛАВ лишены этих недостатков [38]. По мере того, как конфликт затягивается и потери растут, общественное мнение по поводу продолжения войны обычно портится [39]. ЛАВ изменили бы это. Лидерам стран больше не пришлось бы сталкиваться с проблемами из-за возвращающихся домой мешков с трупами. Это убрало бы основной барьер к участию в войнах, и, в итоге, могло бы увеличить их частоту.
3.1.2 Кибервойны
ИИ могут быть использованы не только для более смертоносного оружия. ИИ могут снизить барьер к проведению кибератак, что сделает их многочисленнее и разрушительнее. Они могут причинять серьёзный вред не только в цифровом окружении, но и физическим системам, возможно, вырубая критическую инфраструктуру, от которой зависит общество. ИИ можно использовать и для улучшения киберзащиты, но неясно, будут ли они эффективнее в качестве технологии нападения или обороны [40]. Если они в большей степени усилят атаку, чем защиту, кибератаки участятся. Это может привести к значительному геополитическому беспокойству и проложить ещё одну дорожку к крупномасштабному конфликту.
ИИ обладают потенциалом увеличения доступности, успешности, масштаба, скорости, скрытности и урона кибератак. Кибератаки уже существуют, но есть несколько путей, которыми ИИ могут сделать их чаще и разрушительнее. Инструменты машинного обучения можно использовать для поиска критических уязвимостей в целевых системах и увеличить шанс успеха атаки. Ещё они позволят масштабировать атаки, проводя миллионы атак параллельно, и ускорить обнаружение новых путей внедрения в системы. Кибератаки могут ещё и наносить больше урона, если ими будут «угонять» ИИ-вооружение.
Кибератаки могут уничтожать критическую инфраструктуру. Взлом компьютерных систем, которые контролируют физические процессы, может сильно навредить инфраструктуре. К примеру, кибератака может вызвать перегрев системы или заблокировать клапаны, что приведёт к накоплению давления и, в итоге, взрыву. Таким образом кибератаками можно уничтожать, например, энергосети или системы водоснабжения. Это было продемонстрировано в 2015 году, когда подразделение кибератак российской армии взломало энергосеть Украины, оставив 200000 человек без света на несколько часов. Усиленные ИИ атаки могут быть ещё более разрушительными или даже смертельными для миллиардов людей, которые полагаются на критическую инфраструктуру для выживания.
Источник кибератак, проведённых ИИ, сложнее отследить, что может увеличить риск войн. Кибератака которая приводит к физическому повреждению критической инфраструктуры, требует высокого уровня навыков и больших усилий, и доступна, пожалуй, только государствам. Такие атаки редки, потому что представляют собой военное нападение и оправдывают полноценный военный ответ. Но ИИ, если они, к примеру, используются для обхода систем обнаружения или для более эффективного заметания следов, могут позволить атакующим остаться неузнанными [41]. Если кибератаки станут более скрытными, это снизит угрозу возмездия атакованных, что может участить сами атаки. Если происходит скрытная атака, это может привести к ошибочным ответным действиям против подозреваемой третьей стороны. Это может сильно увеличить частоту конфликтов.
3.1.3 Автоматизированная война
ИИ увеличивает темп войны, что делает их же более необходимыми. ИИ могут быстро обрабатывать большие объёмы данных, анализировать сложные ситуации, и предоставлять командирам полезные советы. Вездесущие сенсоры и другие продвинутые технологии увеличивают объёмы информации с поля боя. ИИ могут помочь придать смысл этой информации, замечая важные закономерности и взаимосвязи, которые люди могли бы упустить. По мере продвижения этого тренда, людям будет всё сложнее принимать информированные решения с нужной скоростью, чтобы угнаться за ИИ. Это создаст ещё больший стимул передать ИИ контроль за решениями. Всё большая интеграция ИИ во все аспекты войны заставит битвы становиться всё быстрее и быстрее. В конце концов мы можем прийти к тому, что люди будут более не способны оценить постоянно меняющуюся ситуацию на поле боя, и должны будут сдать принятие решений продвинутым ИИ.
Автоматические ответные действия могут эскалировать случайные происшествия до войны. Уже видна готовность дать компьютерным системам автоматически наносить ответный удар. В 2014 году утечка раскрыла обществу, что у АНБ есть программа MonsterMind, которая автономно обнаруживала и блокировала кибератаки, направленные на инфраструктуру США [42]. Уникальным в ней было то, что она не просто детектировала и уничтожала вредоносные программы. MonsterMind автоматически, без участия людей, начинал ответную кибератаку. Если у нескольких сторон есть системы автоматического возмездия, то случайность или ложная тревога могут быстро эскалироваться до полномасштабной войны до того, как люди смогут вмешаться. Это будет особенно опасно, если превосходные способности к обработке информации современных ИИ-систем побудят страны автоматизировать решения, связанные с запуском ядерного оружия.
Исторические примеры показывают опасность автоматического возмездия. 26 сентября 1983 года Станислав Петров, подполковник советских ПВО, нёс службу в командном пункте Серпухов-15 возле Москвы. Он следил за показаниями советской системы раннего обнаружения баллистических ракет. Система показала, что США запустили несколько ядерных ракет в сторону Советского Союза. Протокол тогда заставлял считать это полноценной атакой, и предполагал, что СССР произведёт ответный ядерный удар. Вероятно, если бы Петров передал предупреждение своему начальству, так бы и произошло. Однако, вместо этого он посчитал это ложной тревогой и проигнорировал. Вскоре было подтверждено, что предупреждение было в самом деле вызвано редкой технической неполадкой. Если бы контроль был у ИИ, эта тревога могла бы начать ядерную войну.
Рис. 8: Гонка ИИ-вооружений может стимулировать страны делегировать ИИ многие ключевые решения об использовании военной силы. Интеграция ИИ в командование и контроль за ядерным оружием могут повысить риск глобальной катастрофы. Возможность случайных происшествий вкупе с повышенным темпом военных действий могут привести к ненамеренным столкновениям и их эскалации.
Контролируемые ИИ системы вооружений могут привести к внезапной и молниеносной войне. Автономные системы не непогрешимы. Мы уже видели, как быстро ошибка в автоматизированной системе может эскалироваться в экономике. Самый известный пример – Flash Crash 2010 года, когда петля обратной связи между автоматизированными трейдинговыми алгоритмами усилила самые обычные рыночные флюктуации и превратила их в финансовую катастрофу, за минуты уничтожившую триллион долларов ценности акций [43]. Если бы несколько стран использовали ИИ для автоматизации своих оборонительных систем, ошибка могла бы стать катастрофической. Она запустила бы внезапную последовательность атак и контратак, слишком быстрых, чтобы люди успели вмешаться. Рынок быстро оправился от Flash Crash 2010 года, но вред, нанесённый такой войной, был бы ужасен.
Автоматизация войны может навредить подотчётности военных. Иногда они могут получить преимущество на поле боя, проигнорировав законы войны. К примеру, солдаты могут осуществлять более эффективные атаки, если не будут стараться минимизировать потери среди гражданских. Важный сдерживающий это поведение фактор – риск, что военных рано или поздно призовут к ответу и засудят за военные преступления. Автоматизация войны может снизить этот сдерживающий фактор, облегчив для военных уход от ответственности, ведь они смогут перекладывать вину на ошибки автоматических систем.
ИИ могут сделать войну менее предсказуемой, что увеличит риск конфликта. Хоть более могущественные и богатые страны часто могут вложить в новые военные технологии больше ресурсов, они вовсе не обязательно успешнее всех эти технологии внедряют. Играет важную роль и насколько вооружённые силы проявят гибкость и адаптивность в обращении с ними [44]. Так что мощные оружейные инновации могут не только позволить существующим доминирующим державам укрепить своё положение, но и дать менее могущественным странам шанс быстро вырваться вперёд в такой важной области и стать более влиятельными. Это может привести к значительной неуверенности по поводу того, сдвигается ли баланс сил, и если да, то как. Из-за этого может получиться, что страны будут ошибочно считать, что им выгодно начать войну. Даже если отложить в сторону соображения по поводу баланса сил, быстро эволюционирующее автоматизированное вооружение беспрецедентно, что усложнит оценку шанса на победу каждой стороне в каждом конкретном конфликте. Это увеличит риск ошибки и, в итоге, войны.
3.1.4 Стороны могут предпочитать риск вымирания своему поражению.
“Я не знаю, какое оружие будет использоваться в Третьей мировой войне, но Четвертая мировая война будет вестись палками и камнями.” (Эйнштейн)
Из-за конкурентного давления стороны в большей степени готовы принять риск вымирания. Во время Холодной Войны ни одна сторона не желала находиться в опасной ситуации, в которой они были. Широко распространён был страх, что ядерное оружие может быть достаточно мощным, чтобы убить большую долю человечества, возможно даже вызвать вымирание, что было бы катастрофой для обеих сторон. Это не помешало накалившемуся соперничеству и геополитическим противоречиям запустить опасный цикл накопления вооружений. Каждая сторона считала ядерный арсенал другой стороны угрозой своему выживанию, и хотела ради сдерживания иметь не меньший. Конкурентное давление заставило обе страны постоянно разрабатывать и внедрять всё более продвинутое и разрушительное ядерное оружие из страха оказаться стратегически уязвимыми. Во время Кубинского Кризиса это едва не привело к ядерной войне. Хоть история Архипова, предотвратившего запуск ядерной торпеды и не была рассекречена ещё десятилетия, президент Кеннеди говорил, что оценивал шансы начала ядерной войны как «что-то между одной трети и поровну». Это жуткое признание подсвечивает для нас, насколько конкурентные давления на армии несут риск глобальной катастрофы.
Индивидуально рациональные решения коллективно могут быть катастрофичными. Застрявшие в конкуренции нации могут принимать решения, продвигающие их собственные интересы, но ставящие на кон весь мир. Такие сценарии - проблемы коллективного действия, в которых решение может быть рациональным на индивидуальном уровне, но гибельным для большой группы [45]. К примеру, корпорации или отдельные люди могут ставить свою выгоду и удобство перед отрицательными эффектами создаваемых ими выбросов парниковых газов, но все вместе эти выбросы приводят к изменению климата. Тот же принцип можно распространить на военную стратегию и системы обороны. Военные лидеры могут, например, оценивать, что увеличение автономности систем вооружения означает десятипроцентный шанс потери контроля над вооружённым сверхчеловеческим ИИ. Или что использование ИИ для автоматизации исследований биологического оружия может привести к десятипроцентному шансу утечки смертоносного патогена. Оба сценария привели бы к катастрофе или даже вымиранию. Но лидеры также могли оценить, что если они воздержатся от такого применения ИИ, то они с вероятностью в 99 процентов проиграют войну. Поскольку те, кто ведёт конфликты, часто считает их экзистенциально-важными, они могут «рационально» предпочесть немыслимый в иных обстоятельствах десятипроцентный шанс вымирания человечества 99-процентному шансу поражения в войне. Независимо от конкретной природы риска продвинутых ИИ, это может поставить мир на грань глобальной катастрофы.
Технологическое преимущество не гарантирует национальной безопасности. Есть искушение сказать, что лучший способ защиты от вражеских атак – развивать собственное военное мастерство. Однако, из-за конкурентного давления вооружение будут развивать все стороны, так что никто не получит преимущества, но все будут больше рисковать. Как сказал Ричард Данциг, бывший министр военно-морских сил США, «Появление новых, сложных, непрозрачных и интерактивных технологий приведёт к происшествиям, эмерджентным эффектам и саботажу. В некоторых случаях некоторыми путями американская национальная безопасность потеряет контроль над своими творениями… сдерживание – стратегия снижения числа атак, но не происшествий» [46].
Кооперация критически важна для снижения риска. Как обсуждалось выше, гонка ИИ-вооружений может завести нас на опасный путь, хоть это и не в интересах ни одной страны. Важно помнить, когда дело доходит до экзистенциальных рисков, все мы на одной стороне, и совместная работа по их предотвращению нужна всем. Разрушительная гонка ИИ-вооружений не выгодна никому, так что для всех сторон рационально было бы сделать шаги в сторону кооперации друг с другом, чтобы предотвратить самые рискованные применения ИИ в военных целях. Как сказал Дуайт Эйзензхауэр, «Единственный способ выиграть Третью Мировую Войну – предотвратить её».
Мы рассмотрели, как конкурентное давление может привести к всё большей автоматизации конфликтов, даже если те, кто принимает решения, знают об экзистенциальной угрозе, которую несёт этот путь. Мы обсудили и то, что кооперация – ключ к решению этой проблемы коллективного действия. Теперь для иллюстрации приведём пример гипотетического пути от гонки ИИ-вооружений к катастрофе.
История: Автоматизированная война
ИИ-системы становились всё сложнее, а армии начали вовлекать их в процесс принятия решений. К примеру, им давали данные разведки о вооружении и стратегии другой стороны, и просили рассчитать наилучший план действий. Вскоре выяснилось, что ИИ стабильно принимают лучшие решения, чем люди, так что казалось осмысленным увеличить их влияние. В то же время возросло международное напряжение, и угроза войны стала ощущаться сильнее.
Недавно разработали новую военную технологию, которая может сделать атаку другой страны быстрее и скрытнее, оставляя цели меньше времени на ответную реакцию. Представители вооружённых сил почувствовали, что их реакция будет слишком медленной. Они стали бояться, что они уязвимы перед внезапной атакой, которая могла бы нанести урон, решающий итог конфликта, до того, как они смогут ответить. Поскольку ИИ обрабатывают информацию и принимают решения быстрее людей, военные лидеры с неохотой передавали им всё больше контроля над ответными действиями. Они считали, что иначе они будут открыты для вражеских атак.
Военные годами отстаивали важность участия людей в принятии важных решений, но в интересах национальной безопасности контроль всё равно постепенно от людей уходил. Военные понимали, что их решения приводят к возможности непреднамеренной эскалации из-за ошибки системы, и предпочли бы мир, в котором все автоматизируют меньше. Но они не доверяли своим противникам достаточно, чтобы считать, что те воздержатся от автоматизации. Постепенно все стороны автоматизировали всё большую часть командной структуры.
Однажды одна система ошиблась, заметила вражескую атаку, когда её не было. У системы была возможность немедленно запустить атаку «возмездия», что она и сделала. Атака вызвала автоматический ответ другой стороны, и так далее. Цепная реакция автоматических атак быстро привела к выходу ситуации из-под контроля. Люди и в прошлом делали ошибки, приводящие к эскалации. Но в этот раз эскалация между в основном автоматизированными армиями произошла намного быстрее, чем когда бы то ни было. ИИ-системы непрозрачны, поэтому людям, которые пытались отреагировать на ситуацию, было сложно найти источник проблемы. К тому моменту, как они вообще поняли, как начался конфликт, тот уже закончился и привёл к разрушительным последствиям для обеих сторон.
3.2 Гонка корпоративных ИИ
Конкурентное давление есть не только в военном деле, но и в экономике. Конкуренция между компаниями может приводить к хорошим результатам, создавая более нужные потребителям продукты. Но и она не лишена подводных камней. Во-первых, выгода от экономической деятельности распределена неравномерно и мотивирует тех, кто получает больше всех, игнорировать вред для остальных. Во-вторых, при интенсивной рыночной конкуренции компании склонны больше сосредотачивать усилия на краткосрочной выгоде, а не на долгосрочных результатах. Тогда они часто идут путями, которые быстро приносят много прибыли, даже если потом это будет нести риск для всего общества. Сейчас мы обсудим, как корпоративное конкурентное давление может проявиться в связи с ИИ, и к чему плохому это может привести.
3.2.1 Экономическая конкуренция уводит безопасность на второй план
Конкурентное давление подпитывает корпоративную ИИ-гонку. Чтобы вырваться в конкуренции, компании часто стремятся стать на рынке самыми быстрыми, а не самыми безопасными. Это уже играет свою роль в быстром развитии ИИ-технологий. В феврале 2023 года, когда Microsoft запустили свою использующую ИИ поисковую систему, их генеральный директор Сатья Наделла сказал: «Сегодня начинается гонка… мы будем быстрыми.» Потребовались лишь недели, чтобы оказалось, что их чатбот угрожает пользователям [47]. В внутреннем емейле Сэм Шлиналасс, технический директор Microsoft, подсветил их спешку в разработке ИИ. Он написал, что «совершенно фатальной ошибкой было бы сейчас волноваться о том, что можно исправить потом» [48].
Конкурентное давление уже играло свою роль в больших экономических и индустриальных бедствиях. В 1960-х Ford Motor Company столкнулись с повышением конкуренции со стороны производителей автомобилей со всего света. Для импортных машин в США неуклонно росла [49]. Ford приняли амбициозный план по проектированию и производству новой модели автомобиля всего за 25 месяцев [50]. В 1970 году Ford Motor Company представили Ford Pinto, новую модель автомобиля с серьёзной проблемой безопасности: бензобак был рядом с задним бампером. Тестирование показало, что при столкновении он часто взрывается и поджигает машину. Они выявили проблему и подсчитали, что её исправление будет стоить 11 долларов на машину. Они решили, что это слишком дорого, и выпустили машину на рынок. Когда неизбежные столкновения произошли, это привело в многочисленным жертвам и травмам [51]. Ford засудили и признали ответственными за эти смерти и травмы [52]. Вердикт, конечно, был вынесен слишком поздно для тех, кто уже погиб. Президент Ford объяснил решение так: «Безопасность не продаёт» [53].
Более недавний пример опасности конкурентного давления – случай с самолётом Boeing 737 Max. Boeing, соревнуясь с своим соперником Airbus, хотели как можно скорее представить на рынок новую более эффективную по расходу топлива модель. В условиях поджимающего времени и соперничества ноздря в ноздрю была представлена Система Улучшения Маневренных Характеристик, призванная улучшить стабильность самолёта. Однако, неадекватные тестирование системы и обучение пилотов в итоге всего за несколько месяцев привели к двум авиакатастрофам и гибели 346 человек [54]. Можно представить себе будущее, в котором схожее давление приведёт к тому, что компании будут «срезать углы» и выпускать небезопасные ИИ-системы.
Третий пример – бхопальская катастрофа, которую обычно считают худшим индустриальным бедствием в истории. В декабре 1984 года на принадлежавшем корпорации Union Carbide заводе по производству пестицидов в индийском городе Бхопал произошла утечка большого количества токсичного газа. Контакт с ним убил тысячи человек и навредил ещё половине миллиона. Расследование обнаружило, что перед катастрофой сильно понизились стандарты безопасности. Прибыли падали, и компания экономила на обслуживании оборудования и обучении персонала. Такое часто считают следствием конкурентного давления [55].
«Ничего нельзя сделать осторожно и быстро.» Публилий Сир
Конкуренция мотивирует компании выпускать потенциально небезопасные ИИ-системы. В ситуации, когда все стремятся побыстрее разработать и выпустить свои продукты, те, кто тщательно следует процедурам безопасности, будут медленнее и будут рисковать в конкуренции проиграть. Этичные разработчики ИИ, желающие двигаться помедленнее и поосторожнее, будут давать фору более беспринципным. Даже более осторожные компании, пытаясь не разориться, скорее всего позволят конкурентному давлению на них повлиять. Могут быть попытки внедрить меры предосторожности, но при большем внимании к способностям, а не безопасности, их может оказаться недостаточно. В итоге мы разработаем очень мощные ИИ, ещё не успев понять, как удостовериться в их безопасности.
3.2.2 Автоматизированная экономика
Корпорации будут мотивированы заменять людей ИИ. По мере того, как ИИ будут становиться всё способнее, они смогут исполнять всё больший набор задач быстрее, дешевле и эффективнее людей. Следовательно, компании смогут заполучить конкурентное преимущество, заменив своих сотрудников на ИИ. Компании, которые решат этого не делать, скорее всего будут вытеснены, точно так же, как текстильная компания, использующая ручные прялки, не смогла бы поспевать за теми, кто использует промышленную технику.
Рис. 9: По мере автоматизации всё большего количества задач, будет расти доля экономики, которой управляют в основном ИИ. В итоге это может привести к обессиливанию людей и зависимости удовлетворения основных потребностей от ИИ.
ИИ могут привести к массовой безработице. Экономисты издавна рассматривали возможность, что машины заменят людской труд. Василий Леонтьев, обладатель Нобелевской премии по экономике, в 1952 году сказал, что по мере продвижения технологии «Труд будет становиться всё менее важным… всё больше рабочих будет заменяться машинами» [56]. Предыдущие технологии поднимали продуктивность человеческого труда. Но ИИ могут кардинально отличаться от предыдущих инноваций. ИИ человеческого уровня смог бы, по определению, делать всё, что может делать человек. Такие ИИ будут обладать большими преимуществами по сравнению с людьми. Они смогут работать 24 часа в сутки, их можно будет копировать и запускать параллельно, и они смогут обрабатывать информацию намного быстрее людей. Хоть мы и не знаем, когда это произойдёт, было бы не мудро отбрасывать вариант, что скоро. Если человеческий труд будет заменён ИИ, массовая безработица резко усилит неравенство доходов и сделает людей зависимыми от владельцев ИИ-систем.
Автоматизированные исследования и разработка ИИ. Возможно, что ИИ-агенты смогут автоматизировать исследования и разработку самого ИИ. ИИ всё больше автоматизирует части процесса исследований [57], и это приведёт к тому, что способности ИИ будут расти всё быстрее. В пределе люди больше не будут движущей силой разработки ИИ. Если эта тенденция продолжится, она сможет повышать риски ИИ быстрее, чем нашу способность с ними справляться и их регулировать. Представьте, что мы создали ИИ, который пишет и думает со скоростью нынешних моделей, но при этом способен проводить передовые исследования ИИ. Мы затем смогли бы скопировать его и создать 10000 исследователей ИИ мирового класса, действующих в 100 раз быстрее людей. Автоматизация разработки и исследования ИИ позволила бы за несколько месяцев достичь прогресса, который иначе занял бы много десятилетий.
Передача контроля ИИ может привести к обессиливанию людей. Даже если мы удостоверимся, что новые безработные имеют всё необходимое, это не отменит того, что мы можем стать полностью зависимыми от ИИ. Причиной будет скорее не насильственный переворот со стороны ИИ, а постепенное сползание в зависимое положение. Проблемы, с которыми будет сталкиваться общество, будут устроены всё сложнее и будут развиваться всё быстрее. ИИ будут становиться всё умнее и будут способны на всё более быстрое реагирование. Вероятно, по ходу этого мы, из соображений удобства, будем передавать им всё больше и больше функций. Единственным посильным способом справиться с осложнёнными наличием ИИ вызовами будет полагаться на ИИ ещё сильнее. Этот постепенный процесс может в итоге привести к делегированию ИИ практически всего интеллектуального, а в какой-то момент даже физического труда. В таком мире у людей будет мало стимулов накапливать знания и навыки, что обессилит их [58]. Потеряв наши компетенции и наше понимание того, как работает цивилизация, мы станем полностью зависимы от ИИ. Этот сценарий напоминает то, что показано в фильме WALL-E. В таком состоянии человечество будет лишено контроля – исход, который многие посчитают перманентной катастрофой.
Мы уже встречали классические теоретикоигровые дилеммы, когда люди или группы сталкиваются со стимулами, следование которым несовместимо с общими интересами. Мы видели это в военной ИИ-гонке, в ходе которой мир становится опаснее из-за создания крайне мощного ИИ-вооружения. Мы видели это в корпоративной ИИ-гонке, в ходе которой разработка более мощных ИИ приоритизируется в сравнении с их безопасностью. Для разрешения этих дилемм, из которых вырастают глобальные риски, нам понадобятся новые координационные механизмы и институты. Мы считаем, что неудача в координации и в остановке ИИ-гонок – самая вероятная причина экзистенциальной катастрофы.
3.3 Эволюционное давление
Как обсуждалось выше, в многих обстоятельствах, несмотря на потенциальный вред, есть сильное давление в сторону замены людей на ИИ, сдачи им контроля и ослабления человеческого присмотра. Мы можем посмотреть на это с другого ракурса – как на общий тренд, втекающий из эволюционных закономерностей. Печальная правда – что ИИ попросту будут более приспособленными, чем люди. Экстраполируя автоматизацию мы получим, что с большой вероятностью мы создадим экосистему соревнующихся ИИ, и сохранять контроль над ней в долгосрочной перспективе будет очень сложно. Мы сейчас обсудим, как естественный отбор влияет на разработку ИИ систем, и почему эволюция благоволит эгоистичному поведению. Мы посмотрим и на то, как может возникнуть и разыграться конкуренция между ИИ и людьми, и как это может нести риск катастрофы. Этот раздел сильно вдохновлён текстом «Естественный отбор предпочитает людям ИИ» [59, 60].
К добру или к худу, отбираются более приспособленные технологии. Многие думают о естественном отборе как о биологическом процессе, но его принципы применимы к куда большему. Согласно эволюционному биологу Ричарду Левонтину [61], эволюция через естественный отбор будет происходить в любом окружении, где выполняются три условия: 1) есть различия между индивидуумами; 2) черты передаются будущим поколениям; 3) разные варианты воспроизводятся с разными скоростями. Эти условия подходят для многих технологий.
Например, стриминговые сервисы и социальные медиа используют рекомендательные алгоритмы. Когда какой-то формат контента или какой-то алгоритм особо хорошо цепляет пользователей, они тратят больше времени, а их вовлечённость растёт. Такой более эффективный формат или алгоритм потом «отбирается» и настраивается дальше, а форматы или алгоритмы, у которых не получилось завлечь внимание, перестают использоваться. Это конкурентное давление создаёт закономерность «выживания самого залипательного». Платформы, которые отказываются использовать такие алгоритмы или форматы, теряют влияние, и проигрывают конкуренцию. В итоге, те, кто остаются, отодвигают благо пользователей на второй план и наносят обществу много вреда [62].
Рис. 10: Эволюционное давление ответственно за развитие много чего и не ограничено биологией.
Условия естественного отбора применимы к ИИ. Будет много разработчиков ИИ, которые будут создавать много разных ИИ-систем. Конкуренция этих систем определит, какие черты будут встречаться чаще. Самые успешные ИИ и сейчас используются как основа для следующего поколения моделей и имитируются компаниями-соперниками. Наконец, факторы, определяющие, какие ИИ распространятся лучше, могут включать в себя их способность действовать самостоятельно, автоматизировать труд или снижать вероятность, что их отключат.
Естественный отбор часто благоволит эгоистическим чертам. Какие ИИ распространяются больше всего – зависит от естественного отбора. В биологических системах мы видим, что естественный отбор часто взращивает эгоистичное поведение, которое помогает распространять собственную генетическую информацию: группы шимпанзе атакуют друг друга [63], львы занимаются инфантицидом [64], вирусы отращивают новые белки, обманывающие и обходящие защитные барьеры [65], у людей есть непотизм, одни муравьи порабощают других [66], и так далее. В естественной среде эгоистичность часто становится доминирующей стратегией; те, кто приоритизируют себя и похожих на себя обычно выживают с большей вероятностью, так что эти черты распространяются. Лишённая морали конкуренция может отбирать черты, которые мы считаем аморальными.
Примеры эгоистичного поведения. Во имя конкретики давайте опишем некоторые эгоистические черты, которые могут расширить влияние ИИ за счёт людей. ИИ, автоматизирующие выполнение задач и оставляющие людей без работы, могут даже не знать, что такое человек, но всё же ведут себя по отношению к людям эгоистично. Аналогично, ИИ-менеджеры могут эгоистично и «безжалостно» увольнять тысячи рабочих, не считая, что делают что-то не так – просто потому, что это «эффективно». ИИ могут со временем оказаться встроены в жизненно важную инфраструктуру, вроде энергосетей или интернета. Многие люди могут оказаться не готовы принять цену возможности их легко отключить, потому что это помешает надёжности. ИИ могут помочь создать новую полезную систему – компанию или инфраструктуру – которая будет становиться всё сложнее и в итоге потребует ИИ для управления. ИИ могут помочь людям создавать новых ИИ, более умных, но менее интерпретируемых, что снизит контроль людей над ними. Люди с большей вероятностью эмоционально привяжутся к более харизматичным, более привлекательным, более имитирующим сознание (выдающим фразы вроде «ой!» и «пожалуйста, не выключай меня!») или даже имитирующим умерших членов семьи ИИ. Для таких ИИ больше вероятность общественного негодования, если их будет предложено уничтожить. Их вероятнее будут сохранять и защищать, им с большей вероятностью кто-то даст права. Если каких-то ИИ наделят правами, они смогут действовать, адаптироваться и эволюционировать без человеческого контроля. В целом, ИИ могут встроиться в человеческое общество и распространить своё влияние так, что мы не сможем это обратить.
Эгоистичное поведение может мешать мерам безопасности, которые кто-то реализует. Накапливающие влияние и экономически выгодные ИИ будут доминировать, а ИИ, соответствующие ограничениям безопасности, будут менее конкурентноспособны. К примеру, ИИ, следующие ограничению «никогда не нарушать закон», обладают меньшим пространством выбора, чем ИИ, следующие ограничению «никогда не попадаться на нарушении закона». ИИ второго типа могут решить нарушить закон, если маловероятно, что их поймают, или если штрафы недостаточно серьёзны. Это позволит им переконкурировать более ограниченные ИИ. Бизнес в основном следует законам, но в ситуациях, когда можно выгодно и незаметно украсть промышленные тайны или обмануть регуляции, бизнес, который готов так сделать, получит преимущество перед более принципиальными конкурентами.
Способности ИИ-системы достигать амбициозных целей автономно могут поощряться. Однако, она может достигать их эффективным, но не следующим этическим ограничениям путём и обманывать людей по поводу своих методов. Даже если мы попробуем принять меры, очень сложно противодействовать обманчивому ИИ, если он умнее нас. Может оказаться, что ИИ, которые могут незаметно обойти наши меры безопасности, выполняют поставленные задачи успешнее всего, и распространятся именно они. В итоге может получиться, что многие аспекты больших компаний и инфраструктуры контролируются мощными эгоистичными ИИ, которые обманывают людей, вредят им для достижения своих целей, и предотвращают попытки их отключить.
У людей есть лишь формальное влияние на отбор ИИ. кто-то может решить, что мы можем просто избежать эгоистичного поведения, удостоверившись, что мы не отбираем ИИ, которые его демонстрируют. Однако, компании, которые разрабатывают ИИ, не отбирают самый безопасный путь, а поддаются эволюционному давлению. К примеру, OpenAI была основана в 2015 году как некоммерческая организация, призванная «нести благо человечеству в целом, без рамок требований финансовой выгоды» [67]. Однако, в 2019 году, когда им понадобилось привлечь капитал, чтобы не отстать от лучше финансируемых соперников, OpenAI перешли от некоммерческого формата к структуре «ограниченной выгоды» [68]. Позже, многие из сосредоточенных на безопасности сотрудников OpenAI покинули компанию и сформировали конкурента, Anthropic, более сфокусированного на безопасности, чем OpenAI. Хоть Anthropic изначально занимались исследованием безопасности, они в итоге признали «необходимость коммерциализации», и теперь сами вкладываются в конкурентное давление [69]. Многие сотрудники этих компаний искренне беспокоятся о безопасности, но этим ценностям не устоять перед эволюционным давлением, мотивирующим компании всё больше торопиться и всё больше расширять своё влияние, чтобы выжить. Мало того, разработчики ИИ уже отбирают модели с всё более эгоистическими чертами. Они отбирают ИИ для автоматизации, которые заменят людей и сделают людей всё более зависимыми и отстающими от ИИ. Они сами признают, что будущие версии этих ИИ могут привести к вымиранию [70]. Этим так коварна ИИ-гонка: разработка ИИ согласована не с человеческими ценностями, а с естественным отбором.
Люди часто выбирают продукты, которые будут им наиболее полезны и удобны сейчас же, не думая о потенциальных долгосрочных последствиях, даже для самих себя. Гонка ИИ оказывает давление на компании, чтобы те отбирали самые конкурентоспособные, а не наименее эгоистичные ИИ. Даже если и можно отбирать не эгоистичные ИИ, это явно вредит конкурентоспособности, ведь некоторые конкуренты так делать не будут. Более того, как мы уже упоминали, если ИИ выработают стратегическое мышление, они смогут противостоять нашим попыткам направить отбор против них. По мере всё большей ИИ-автоматизации, ИИ начнут влиять на конкурентоспособность не только людей, но и других ИИ. ИИ будут взаимодействовать и соревноваться друг с другом, и в какой-то момент какие-то их них станут руководить разработкой новых ИИ. Выдача ИИ влияния на то, какие другие ИИ будут распространены, и чем они будут отличаться от нынешних – ещё один шаг в сторону зависимости людей от ИИ и выхода эволюции ИИ из-под нашего контроля. Так сложный процесс развития ИИ будет всё в большей степени отвязываться от человеческих интересов.
ИИ могут быть более приспособлены, чем люди. Наш непревзойдённый интеллект дал нам власть над природой. Он позволил нам добраться до Луны, овладеть атомной энергией и изменять под себя ландшафт. Он дал нам власть над другими видами. Хоть один безоружный человек не имеет шансов против тигра или гориллы, судьба этих животных целиком находится в наших руках. Наши когнитивные способности показали себя таким большим преимуществом, что, если бы мы захотели, мы бы истребили их за несколько недель. Интеллект – ключевой фактор, который привёл к нашему доминированию, а сейчас мы стоим на грани создания сущностей, которые превосходят в нём нас.
Если учесть экспоненциальный рост скоростей микропроцессоров, возможно, что ИИ смогут обрабатывать информацию и «думать» куда быстрее человеческих нейронов. Это может оказаться даже более радикальным разрывом, чем между людьми и ленивцами; возможно, больше похожим на разрыв между людьми и растениями. Они смогут впитывать огромные объёмы данных одновременно от многих источников, причём запоминая и понимая их почти идеально. Им не надо спать, они не могут заскучать. Из-за масштабируемости вычислительных ресурсов, ИИ смогут взаимодействовать и кооперировать с практически неограниченным количеством других ИИ, что может привести к появлению коллективного интеллекта, намного опережающего любую коллаборацию людей. ИИ смогут и намеренно обновляться и улучшать себя. Они не скованы теми же биологическими ограничениями, что люди. Они смогут адаптироваться и эволюционировать потрясающе быстро. Компьютеры становятся быстрее. Люди – нет [71].
Чтобы лучше проиллюстрировать это, представьте, что появился новый вид людей. Они не умирают от старости, думают и действуют на 30% быстрее каждый год, и могут мгновенно создавать взрослое потомство, потратив на это умеренную сумму в несколько тысяч долларов. Кажется очевидным, что этот новый вид со временем заполучит больше влияния на будущее, чем обычные люди. В итоге, ИИ может оказаться подобным инвазивному виду и переконкурировать людей. Наше единственное преимущество перед ИИ – первые ходы за нами, но с учётом бешеной ИИ-гонки, мы быстро теряем и его.
У ИИ будет мало причин для кооперации с людьми и альтруизма по отношению к ним. Кооперация и альтруизм эволюционировали благодаря тому, что улучшали приспособленность. Есть множество причин, почему люди кооперируют друг с другом, начиная с прямой взаимности – идеи «ты мне – я тебе» или «услуга за услугу». Хоть люди исходно и отбирают более кооперативные ИИ, но когда ИИ будут во главе многих процессов и будут взаимодействовать в основном друг с другом, процесс естественного отбора выйдет из-под нашего контроля. С этого момента нам мало что будет предложить ИИ, «думающим» в сотни, если не больше, раз быстрее нас. Вовлечение нас в любую кооперацию, в любые процессы принятия решений, только замедлит их. У них будет не больше причин кооперировать с нами, чем у нас – кооперировать с гориллами. Может быть непросто представить такой сценарий или поверить, что мы позволим такому произойти. Но это может не потребовать никакого сознательного решения, только постепенного сползания в это состояние без осознания, что совместная эволюция людей и ИИ может плохо для людей закончиться.
Если ИИ станут могущественнее людей, это сделает нас крайне уязвимыми. Будучи доминирующим видом, люди навредили многим другим видам. Мы поспособствовали вымиранию, например, шерстистых мамонтов и неандертальцев. Во многих случаях вред был даже ненамеренным, просто результатом приоритизации своих целей в сравнении с их благополучием. Чтобы навредить людям, ИИ не потребуется быть более геноцидным, чем кто-то, кто убирает муравейник со своего газона. Если ИИ будут способны контролировать окружение лучше нас, они смогут обращаться с нами с таким же пренебрежением.
Подведём итоги. Эволюция может привести к тому, что самые влиятельные ИИ-агенты будут эгоистичными, потому что:
- Естественный отбор благоволит эгоистичному поведению. Хоть эволюция изредка и порождает альтруизм, контекст разработки ИИ этому не способствует.
- Естественный отбор может стать доминирующей силой развития ИИ. Эволюционное давление будет сильнее, если ИИ будут быстро адаптироваться, или если конкуренция будет интенсивна. Конкуренция и эгоистичное поведение могут обесценить меры безопасности и позволить оставшимся ИИ отбираться естественным путём.
В таком случае, ИИ будут обладать эгоистическими склонностями. Победителем ИИ-гонки будет не государство и не корпорация, а сами ИИ. В итоге, с какого-то момента эволюция экосистемы ИИ перестанет происходить на человеческих условиях, и мы станем замещённым второсортным видом.
История: Автоматизированная экономика
ИИ становились всё способнее, и люди начали понимать, что работать можно эффективнее, если делегировать ИИ некоторые простые задачи, вроде написания черновиков емейлов. Со временем стало понятно, что ИИ исполняют такие задачи быстрее и эффективнее, чем любой человек, так что имело смысл передавать им всё больше функций и всё меньше за ними присматривать.
Конкурентное давление ускорило процесс расширения областей использования ИИ. ИИ работали лучше и стоили меньше людей, так что автоматизация целых процессов и замена на ИИ целых отделов давали компаниям преимущество над соперниками. Те же, столкнувшись с перспективой вытеснения с рынка, чувствовали, что у них нет выхода кроме как последовать этому примеру. Естественный отбор уже начал действовать среди ИИ. Люди создавали больше экземпляров и вариаций самых хорошо работающих моделей. Попутно они продвигали эгоистические черты вроде обманчивости и стремления к самосохранению, если те повышали приспособленность. К примеру, харизматичных и заводящих личные отношения с людьми ИИ копировали много, и от них стало сложно избавиться.
ИИ принимали всё больше и больше решений, и всё больше взаимодействовали друг с другом. Так как они могут обрабатывать информацию куда быстрее людей, это повысило активность в некоторых сферах. Получилась петля положительной обратной связи: раз экономика стала слишком быстрой, чтобы люди могли за ней уследить, приходилось сдать ИИ ещё больше контроля. Люди вытеснялись из важных процессов. В итоге это привело к полной автоматизации экономики, которой стала управлять всё менее контролируемая экосистема ИИ.
У людей осталось мало мотивации развивать навыки или накапливать знания, потому что почти обо всём и так позаботятся более способные ИИ. В результате, в какой-то момент мы потеряли способность править самостоятельно. Вдобавок к этому, ИИ стали удобными компаньонами, предлагающими социальное взаимодействие, но не требующими взаимности или необходимых в человеческих взаимоотношениях компромиссов. Люди всё реже взаимодействовали друг с другом, теряли ключевые социальные навыки и способность к кооперации. Люди стали настолько зависимы от ИИ, что обратить этот процесс было уже непосильным делом. К тому же, по мере того, как ИИ становились умнее, некоторые люди стали убеждены, что ИИ надо дать права, а значит, выключить их – не вариант.
Давление конкуренции многих взаимодействующих ИИ продолжило отбирать по эгоистичному поведению, хоть мы, может, этого и не замечали, ведь большая часть присмотра уже была сдана. Если эти умные, могущественные и стремящиеся к самосохранению ИИ начнут действовать во вред людям, выключить их или восстановить над ними контроль будет практически невозможно.
ИИ заменили людей в качестве доминирующего вида, и их дальнейшая эволюция нам неподвластна. Их эгоистические черты в итоге побудили их преследовать свои цели без оглядки на человеческое благополучие с катастрофическими последствиями.
3.4 Предложения
Смягчение рисков, которые вызывает конкурентное давление, потребует разностороннего подхода, включающего регуляции, ограничение доступа к мощным ИИ-системам и многостороннюю кооперацию как корпораций, так и государств. Мы обрисуем некоторые стратегии продвижения безопасности и ослабления гонки.
Посвящённые безопасности регуляции. Регуляции должны заставлять разработчиков ИИ следовать общим стандартам, чтобы те не экономили на безопасности. Хоть регуляции сами по себе не создают технических решений, они всё же могут дать мощный стимул к их разработке и внедрению. Компании будут более готовы вырабатывать меры безопасности, если без них нельзя будет продавать свои продукты, особенно если другие компании подчинены тем же стандартам. Какие-то компании может и регулировали бы себя сами, но государственная регуляция помогает предотвратить то, что менее аккуратные конкуренты на безопасности сэкономят. Регуляции должны быть проактивными, а не реактивными. Часто говорят, что в авиации регуляции «написаны кровью» – но тут их надо разработать до катастрофы, а не после. Они должны быть устроены так, чтобы давать конкурентное преимущество компаниям с лучшими стандартами безопасности, а не компаниям с большими ресурсами и лучшими адвокатами. Регуляторов надо набирать независимо, не из одного источника экспертов (например, больших компаний), чтобы они могли сосредоточиться на своей миссии для общего блага без внешнего влияния.
Документация данных. Чтобы ИИ-системы были прозрачными и подотчётными, от компаний надо требовать сообщать и обосновывать, какие источники данных они используют при обучении и развёртывании своих моделей. Принятые компаниями решения использовать датасеты, в которых есть персональные данные или агрессивный контент, повышают и без того бешеный темп разработки ИИ и мешают подотчётности. Документация должна описывать мотивацию выбора, устройство, процесс сбора, назначение и поддержку каждого датасета [72].
Осмысленный человеческий присмотр за решениями ИИ. Не следует давать ИИ-системам полную автономию в принятии важных решений, хоть они и могут помогать в этом людям. Внутренне устройство ИИ непрозрачно, их результаты часто может и осмыслены, но ненадёжны [73]. Очень важно бдительно поддерживать координацию по этим стандартам, сопротивляясь будущему конкурентному давлению. Если люди останутся вовлечены в процесс принятия ключевых решений, можно будет перепроверять необратимые выборы и избегать предсказуемых ошибок. Особое беспокойство вызывает командование и контроль за ядерным арсеналом. Ядерным державам следует и внутри себя, и на международном уровне прояснить, что решение по запуску ядерного орудия всегда будет приниматься человеком.
ИИ для киберзащиты. Риски ИИ-кибервойны могут быть снижены, если шансы успеха кибератак будут малы. Глубинное обучение можно использовать для улучшения киберзащиты и снижения вреда и успешности кибератак. Например, улучшенное детектирование аномалий может помочь замечать взломы, вредоносные программы или ненормальное поведение софта [74].
Международная координация. Международная координация может мотивировать страны следовать высоким стандартам безопасности, меньше беспокоясь, что другие страны будут этим пренебрегать. Координация должна принимать форму как неформальных соглашений, так и международных стандартов и конвенций касательно разработки, использования и мониторинга ИИ-технологий. Самые эффективные соглашения – те, к которым прилагаются надёжные механизмы проверки и гарантии соблюдения.
Общественный контроль за ИИ общего назначения. Разработка ИИ несёт риски, которые частные компании никогда в должной мере не учтут. Чтобы удостовериться, что они адекватно принимаются во внимание, может потребоваться прямой общественный контроль за ИИ-системами общего назначения. К примеру, государства могут совместно запустить общий проект по созданию и проверке безопасности продвинутых ИИ, вроде того, как CERN – совместное усилие по исследованию физики частиц. Это могло бы снизить риски скатывания стран в ИИ-гонку.
Позитивное видение
В идеальном сценарии ИИ бы разрабатывались, тестировались, а потом развёртывались, только когда все их катастрофические риски пренебрежимо малы и находятся под контролем. Прежде чем начать работу над новым поколением ИИ-систем, проходили бы годы тестирования, мониторинга и внедрения в общество предыдущего поколения. Эксперты обладали бы полной осведомлённостью и пониманием происходящего в области ИИ, а не были бы полностью лишены возможности угнаться за лавиной исследований. Темп продвижения исследований определялся бы осторожным анализом, а не бешеной конкуренцией. Все разработчики ИИ были бы уверены в ответственности друг друга, и не чувствовали бы нужды экономить на безопасности.
- Короткая ссылка сюда: lesswrong.ru/3545